A4. This question is about the photoelectric effect. | (a) | State three pieces of evidence provided by the photoelectric effect that support the particle nature of electromagnetic radiation. | | | | | | | | | | | | | | | [3] | 7 | | | | | | | | | | | | | | | | | | |-----|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|---|------|--|--|--|--|--|--|--|------|------|--|--|------|--|--|--|--| | | 1. | | | | | | | | | | | | | | | | |
 | | | | | | | |
 |
 | | |
 |
 | | | | | | | |
 |
 | | |
 | | | | | | | 2. | | | | | | | | | | | | | | | | |
 | | | | | | | | |
 | | |
 |
 | | | | | | | | |
 | | |
 | | | | | | | 3. | | | | | | | | | | | | | | | | |
 | | | | | | | |
 |
 | | |
 | The graph below shows the variation with frequency f of the stopping potential $V_{\rm S}$ for photoelectrons emitted from a metal surface. The photoelectric equation may be written in the form of the word equation photon energy = work function + maximum kinetic energy of electron. | (b) | (i) | State this equation in terms of f and $V_{\rm S}$, explaining all other symbols you use. | [3] | |-----|-----|---|-----| (This question continues on the following page) ## (Question A4 continued) | (ii) | Use your equation to deduce that the gradient of the graph is $\frac{h}{e}$. | [2] | |-------|---|-----| | | | | | | | | | | | | | (iii) | Given that the Planck constant is $6.6 \times 10^{-34} \mathrm{J} \mathrm{s}$, calculate a value for the work function of the surface. | [2] | | | | | | | | | | | | | | 44 . | This | This question is about the wave nature of matter. | | | | | | | | | | | | | |-------------|------|---|---|-----|--|--|--|--|--|--|--|--|--|--| | | (a) | Desc | ribe the concept of matter waves and state the de Broglie hypothesis. | [3] | (b) | An e | electron is accelerated from rest through a potential difference of 850 V. For this | | | | | | | | | | | | | | | (i) | calculate the gain in kinetic energy. | [1] | (ii) | deduce that the final momentum is 1.6×10^{-23} Ns. | [2] | | | | | | | | | | | | | | () | (iii) | determine the associated de Broglie wavelength. (Electron charge $e = 1.6 \times 10^{-19}$ C, Planck constant $h = 6.6 \times 10^{-34}$ Js) | [2] |