A4. This question is about the photoelectric effect.

(a)	State three pieces of evidence provided by the photoelectric effect that support the particle nature of electromagnetic radiation.															[3]	7																	
	1.																	 								 	 			 				
	2.																	 									 			 				
	3.																	 								 	 			 				

The graph below shows the variation with frequency f of the stopping potential $V_{\rm S}$ for photoelectrons emitted from a metal surface.

The photoelectric equation may be written in the form of the word equation photon energy = work function + maximum kinetic energy of electron.

(b)	(i)	State this equation in terms of f and $V_{\rm S}$, explaining all other symbols you use.	[3]

(This question continues on the following page)

(Question A4 continued)

(ii)	Use your equation to deduce that the gradient of the graph is $\frac{h}{e}$.	[2]
(iii)	Given that the Planck constant is $6.6 \times 10^{-34} \mathrm{J} \mathrm{s}$, calculate a value for the work function of the surface.	[2]

44 .	This	This question is about the wave nature of matter.												
	(a)	Desc	ribe the concept of matter waves and state the de Broglie hypothesis.	[3]										
	(b)	An e	electron is accelerated from rest through a potential difference of 850 V. For this											
		(i)	calculate the gain in kinetic energy.	[1]										
		(ii)	deduce that the final momentum is 1.6×10^{-23} Ns.	[2]										
		()												
		(iii)	determine the associated de Broglie wavelength. (Electron charge $e = 1.6 \times 10^{-19}$ C, Planck constant $h = 6.6 \times 10^{-34}$ Js)	[2]										